BY

W. A. MANNING

To the theory of multiply transitive groups BOCHERT has contributed formulæ for the upper limit of the degree of a group when the number of letters displaced by a substitution in it is known. † But for simply transitive primitive groups a corresponding theorem of such elegance does not exist. ‡ However, in the present paper is offered a theorem with some claims to simplicity. It may be stated thus:

If a simply transitive primitive group contains a substitution of prime order p and of degree pq (q less than 2p + 3), its degree is not greater than the larger of the two numbers $qp + q^2 - q$, $2q^2 - p^2$.

Also when the given substitution of prime order has more than 2p + 2 and less than p^2 cycles or when p is 2 or 3, our results are capable of fairly concise expression; but when q exceeds p^2-1 and p is greater than 3 the corresponding upper limit is unfortunately a more complicated function of p and q.

The subject matter of this study is not restricted to the simply transitive primitive groups, but it is proposed to find an upper limit for the degree of some transitive subgroup of a primitive group known to contain a substitution of order p on qp letters. It seems unnecessary to state that a simply transitive primitive group has no transitive subgroup of a lower degree.

A property of transitive groups generated by substitutions of prime order.

1. Let s_1, s_2, \cdots be certain substitutions of prime order that generate a transitive group $G.\S$ For the sake of brevity of statement we may assume that all substitutions of G which are similar to s_1, s_2, \cdots have been added to and

^{*} Presented to the Society, Chicago, December 31, 1909.

[†] BOCHERT, Mathematische Annalen, vol. 40 (1892), pp. 176-193; vol. 49 (1897), pp. 133-144.

[†] JORDAN, Bulletin de la Société Mathématique de France, vol. 1 (1873), pp. 175-221; Crelle's Journal, vol. 79 (1874), 248-258. The latter should be read in connection with the present paper. See also Manning, Bulletin of the American Mathematical Society, vol. 13 (1907), p. 373.

[§] In the American Journal of Mathematics, vol. 28 (1906), p. 226, the author imposed the condition that G is invariant in a primitive group. In these Transactions, vol. 10 (1909), p. 247, that condition was removed, but it was assumed that no substitution s_1, s_2, \cdots has more than p-1 cycles. In the present investigation both these restrictions are removed. Note that the substitutions s_1, s_2, \cdots are not said to be similar or yet of the same prime order.

are included in the series s_1, s_2, \dots . Of these substitutions let s_1, s_2, \dots, s_i , say, generate an intransitive subgroup H_i of G. If an arbitrary choice is made of a transitive constituent of H_i , it will ordinarily be possible to find among the substitutions of the series s_1, s_2, \dots a substitution s_{i+1} which replaces one of the letters of the arbitrarily chosen constituent by a letter of some other set of H_i . We seek the conditions under which it is impossible to affirm the existence of such a substitution.

Let the selected set of letters of H_i be a_1, a_2, \dots, a_{n_i} . By hypothesis there is no substitution in the series s_1, s_2, \dots which replaces a letter a by a letter b, where b represents any letter displaced by H_i but not belonging to the set a. However, there must be at least one substitution in the series s_1, s_2, \dots that replaces an a by a letter a new to H_i , since G is transitive, and otherwise one of these generators would replace an a by a b. It is conceivable that there are a number of substitutions s_{i+1} that replace an a by an a. Let us select from s_1, s_2, \dots one that adds the least possible number of new letters to the set a. We may impose a second independent condition that s_{i+1} shall displace, in the cycles which do not involve letters a, as small a number of new letters a as possible. If no substitution a s

- 2. If p, the order of s_{k+1} , is an odd prime, and if s_{k+1} may be so chosen that it has not more than one letter new to H_k in any cycle, then we can show as follows that there is a substitution s in the series s_1, s_2, \cdots which replaces a letter of the set a of H_k by a letter of another set of H_k , contrary to the hypothesis on which the group H_{k+1} was set up. Thus of course we may not have $s_{k+2} = (a_1b_1\cdots)\cdots$, where b_1 is one of the letters (b) of H_k not included in the set a. If $s_{k+2} = (a_1\beta_1\cdots)\cdots$, where a_1 is a part of the set a_1, a_2, \cdots of H_{k+1} , and a_1 is a letter of a_1 but not in the set a_1, a_2, \cdots nor yet in a_1 , then a_1 is a letter of a_1 but not in the set a_1 , a_2 , a_2 , a_2 , a_3 , a_4 , then a_1 is a letter of a_1 by a_2 of a_1 by a_2 of a_1 if a_2 if a_3 is a letter of a_4 by a_4 of a_4 if a_4
- 3. Now consider the substitution s_{k+1} . It bears the same relation to H_k as s_{i+1} does to H_i . We first note that every power of s_{k+1} replaces an α by an α . If there are two letters α in a cycle of s_{k+1} , in a certain power s_{k+1}^x these two letters α_1 and α_2 are adjacent. Now one of the generators of $s_{k+1}^{-x}H_k s_{k+1}^x$ will replace a letter α by an α unless s_{k+1}^x replaces each one of the n_k letters a_1 , a_2 , ..., a_{n_k} by a letter α , new to H_k ; if every α is followed by an α and if

there are two letters a in the same cycle, $s_{k+1}^x = (a_1 a' \cdots a_2 a'' \cdots) \cdots$ and $s_{k+1}^{xy} = (a_1 a_2 \cdots a' a'' \cdots) \cdots$. Hence s_{k+1} either has at most one a in any cycle, and also at most one β in any one of the other cycles, or s_{k+1} is of the type

(A)
$$(a_1 a_1' a_1'' \cdots a_1^{(p-1)}) (a_2 a_2' a_2' \cdots a_2^{(p-1)}) \cdots (a_{n_k} a_{n_k}' a_{n_k}'' \cdots a_{n_k}^{(p-1)}) \cdots;$$

and in this second case we should note that the minimum number of new letters displaced in cycles with a_1, a_2, \dots, a_{n_k} by any substitution of the series s_1, s_2, \dots , which connects letters of the set a of H_k with other letters, is equal to the maximum number of such new letters.

4. It may be possible to find a substitution t that replaces an a by an a and an a by some letter ω not one of the letters a_1, a_2, \dots, a_{n_k} , and such that both $t^{-1}H_kt$ and tH_kt^{-1} are subgroups of G. Consider the group $t^{-1}H_kt$. One of the generators σ (a member of the series s_1, s_2, \dots) of $t^{-1}H_kt$ replaces an a by a letter not belonging to the set a. This is clear since the set of letters in $t^{-1}H_kt$ which takes the place of the n_k letters a of a is now composed of two classes of letters, letters a and not-a. Then a is of the type a0 with the a1 letters a2 involved in exactly a2 cycles, and the remaining places in these cycles are filled by letters new to a4. Hence

$$t = (aa' \cdots a'' a \cdots ba' \cdots),$$

that is, t replaces an a by an a, an a by a new letter a, and some letter b of H_k by a letter new to H_k , so that tHt^{-1} leaves fixed the letter a, and one of its generators (belonging to s_1, s_2, \cdots) replaces an a by a not-a. This not-a cannot, by hypothesis, be a b from H_k , and is therefore an a. But since tH_kt^{-1} leaves one a fixed, this generator is not of the type (A). Hence, whenever a substitution t can be set up satisfying the conditions stated, the substitution s_{k+1} of prime order p has at most one new letter in any cycle.

This is trivial when p=2, for then the maximum number of new letters α in a cycle is one. But suppose that s_{k+1} is of type (A):

$$s_{k+1} = (a_1 \alpha_1)(a_2 \alpha_2) \cdots (a_{n_k} \alpha_{n_k}) \cdots,$$

and let us consider the group $t^{-1}H_kt$. From this it follows that t has the form displayed above. The transform of H_k by t^{-1} gives a substitution belonging to the series s_1, s_2, \cdots which leaves fixed one of the letters a, and replaces at least one of them by a letter a. Thus when p=2 the minimum number of new letters a is not in excess of n_k-1 . If there are two letters new to H_k in any cycle of s_{k+1} (of order 2), $s_{k+1}^{-1}H_ks_{k+1}$ leaves those two new letters fixed and one of its generators replaces an a by an a and an a by an a, since $s_{k+1}^{-1}H_ks_{k+1}$ has not more new letters in the set which takes the place of a than the number of new letters that s_{k+1} connects with the a's, that is, than n_k-1 .

5. It will be convenient to have a summary of the preceding results. We recall that s_1, s_2, \cdots are substitutions of prime order that generate a transitive group G, and that s_1, s_2, \cdots, s_i generate an intransitive subgroup H_i of G. The letters $a_1, a_2, \cdots, a_{n_i}$ compose a given set of intransitivity of H_i . If it is impossible to find a substitution in s_1, s_2, \cdots that connects another set of H_i with the set a_1 , we pass to the study of the group H_k . Now H_k coincides with or includes H_i and while the set $a_1, a_2, \cdots, a_{n_k}$ may contain more letters than the set $a_1, a_2, \cdots, a_{n_i}$ of H_i , it includes no letter of any other set of H_i . But if there is no substitution among s_1, s_2, \cdots possessing the required property (of connecting the set a_1, a_2, \cdots of H_k with another set of H_k), all the substitutions of the series s_1, s_2, \cdots that replace one of the letters $a_1, a_2, \cdots, a_{n_k}$ by a letter not a member of this set must be of the type

$$(A) \quad (a_1, \, \alpha_1', \, \alpha_1'', \, \cdots, \, \alpha_1^{(p-1)}) (\, a_2 \alpha_2' \alpha_2'' \cdots \alpha_2^{(p-1)}) \cdots (\, a_{n_k} \alpha_{n_k}' \alpha_{n_k}'' \cdots \alpha_{n_k}^{(p-1)}) \cdots .$$

None of the letters α in (A) are displaced by H_k , or à fortiori, by H_i .

But we have another condition. Among s_1 , s_2 , \cdots there certainly exists a substitution that replaces an a of H_k by a letter of another set of H_k , provided a substitution t can be set up that replaces an a by an a, and an a by a not-a, and having in addition the property that the two transformed groups $t^{-1}H_kt$ and tH_kt^{-1} are both subgroups of G. In particular G itself contains such a substitution t whenever $a_1, a_2, \cdots, a_{n_k}$ do not form a system of imprimitivity of G.

This is only a partial solution of the problem proposed, but it is sufficient for our present purpose.

Other properties of the prime generators of a transitive group.

6. Suppose that there is in the series s_1, s_2, \cdots a substitution s_{i+1} that replaces a letter of any given set of H_i by a letter of H_i not belonging to that From all the substitutions of the series s_1, s_2, \cdots which replace an a by a b, let us select those which displace the minimum number of new letters. Now suppose that one of these substitutions thus selected is such that every power replaces an a by an a. From this hypothesis we shall conclude that s_{i+1} has at most one new letter in any cycle. Let new letters be denoted by α , whether they are transitively connected with a_1, a_2, \cdots or not. If s_{i+1} has two letters adjacent in any cycle, $s_{i+1}^{-1}H_is_{i+1}$ leaves fixed the second of them, so that by hypothesis $H' = \{H_i, s_{i+1}^{-1} H_i s_{i+1}\}$ can have no generator (belonging to s_1, s_2, \cdots) which replaces an a by a b. But H' has letters a and letters b in the same constituent, and all that we can affirm of this constituent is that it is a transitive group generated by certain substitutions of prime order. Bearing in mind the results of §5, we know that there must be a set of letters a_1, a_2, \dots, a_{n_k} including the set $a_1, a_2, \dots, a_{n_i} (n_i \leq n_k)$, such that all the generators of H' which replace a letter of the set a_1, a_2, \dots, a_{n_k} by a letter

not in that set are of the type (A). Now s_{i+1} replaces an a by an a and an aby a b, that is by a letter not in the set a_1, a_2, \dots, a_{n_k} . By hypothesis s_{i+1} has the three sequences $a_1 a_2$, $a_3 b_1$, $a_1 a_2$. Since $s_{i+1}^{-1} H_i s_{i+1}$ has at least one substitution of type (A), s_{i+1} must also have the two other sequences $a_i a_j$ and $b_2 a_5$. Now consider the group $H'' = \{ H_i, s_{i+1} H_i s_{i+1}^{-1} \}$. Since H'' does not displace α_1 , no substitution (belonging to s_1, s_2, \cdots) of H'' replaces an aby a b. But $s_{i+1}H_is_{i+1}^{-1}$ leaves fixed a_i as well as a_i and a generator certainly replaces an a by a not-a, no matter how far we have extended the original set a_1, a_2, \dots, a_{n_i} of H_i by new letters. That is to say, when we have formed the extended set a_1, a_2, \dots, a_{n_k} in the constituent a_1, a_2, \dots of H'', among the generators of $s_{i+1}H_is_{i+1}^{-1}$ there is a substitution connecting other letters with the letters a_1, a_2, \dots, a_{n_k} and which is not of the type (A), inasmuch as it leaves fixed one of the letters a. Therefore, s_{i+1} has not two new letters adjacent in any cycle. If there are two new letters in one cycle of s_{i+1} , some power s_{i+1}^x brings them together. From what has just been said it follows that in s_{i+1}^x no a is followed by or preceded by a b, but $s_{i+1}^x = (a_2 a_1 \cdots b_2 a_2 \cdots) \cdots$, and $s_{i+1}^{xy} = (a_2 b_2 \cdots a_1 a_2 \cdots) \cdots$, which again is the case fully discussed. We have proved that if one of the substitutions $s_1, s_2, \dots, which replaces an a by$ a b and displaces the minimum number of new letters, has the property that no power of it replaces every a by a not-a, then there is at most one new letter in any one of its cycles.

- 7. If b', b'', \cdots , $b^{(\rho)}$ are sets b of H_i which have at least one letter in the same cycle of s_{i+1} with a letter a (a arbitrarily chosen), and unless s_{i+1} has a power which replaces every b' by a not-b' for at least one of the sets b', b'', \cdots , $b^{(\rho)}$, then s_{i+1} has at most one new letter to a cycle. This is an easy inference from the preceding section.
- 8. Let s_{i+1} , one of the substitutions s_1, s_2, \dots , be chosen subject to the conditions:
 - (1) It unites at least two sets of H_i ;
 - (2) it displaces as few new letters as any substitution that satisfies (1);
- (3) it unites as few sets as any of the substitutions satisfying (1) and (2); then if s_{i+1} does not displace all the letters of all the sets united it has at most one new letter to a cycle. This follows from § 6.
- 9. We again select from s_1, s_2, \cdots those substitutions which replace a letter of the set a of H_i by a letter of some other set, and which displace the minimum number of letters α , new to H_i (assuming that at least one such substitution exists). What follows if one of these substitutions (s_{i+1}) has a cycle composed entirely of new letters? As a matter of notation let $\overline{s}_1, \overline{s}_2, \cdots, \overline{s}_{i+1}, \overline{H}_i$, etc., be the substitutions and groups remaining after the erasure of the letters of $\{H_i, s_{i+1}\}$ that do not form a part of the set a_1, a_2, \cdots . The group K_{i+1} generated by the conjugates of H_i is invariant in H_{i+1} , and the constituent \overline{K}_{i+1}

is invariant in \overline{H}_{i+1} . If \overline{K}_{i+1} is intransitive its sets of intransitivity are systems of imprimitivity of \overline{H}_{i+1} and these systems are permuted by s_{i+1} . If \overline{K}_{i+1} is transitive, we note that, since \overline{K}_{i+1} leaves fixed certain letters α , no generator (belonging to \overline{s}_1 , \overline{s}_2 , \cdots) can replace an α of H_i by a b. Then \overline{K}_{i+1} has a subgroup \overline{H}_k , the set a_1 , a_2 , \cdots , a_{n_i} , a_1 , \cdots , $a_{n_k-n_i}$ of which is a system of imprimitivity of \overline{H}_{i+1} . Since \overline{s}_{i+1} replaces an α by a b, \overline{s}_{i+1} replaces the system a_1 , \cdots , a_1 , \cdots by another system. Hence the result:

If s_{i+1} connects transitively a given set a of H_i and another set, and displaces the minimum number of new letters, it cannot contain a cycle composed entirely of new letters unless it actually displaces the n_i letters a and has not more than one letter a in any cycle.

Applications to primitive groups.

10. Now let s_1, s_2, \cdots be a complete set of conjugate substitutions of prime order p and of degree pq in a primitive group. The subgroup $\{s_1, s_2, \dots\}$, because invariant in a primitive group, is transitive. As before let all the substitutions of $\{s_1, s_2, \dots\}$ that are similar to s_1 be associated with the original set of generators s_1, s_2, \cdots . Since we have to do with a primitive group in which $\{s_1, s_2, \dots\}$ is invariant, there exists a substitution t satisfying the conditions of § 5, and in consequence there is in the series s_1, s_2, \cdots a substitution s_{i+1} that replaces a letter of any given set of H_i by a letter of H_i not belonging to that set (an a by a b if we continue the former notation). Let N_i be the degree of H_i , c_i the number of its transitive constituents, and as before let n_i be the degree of the constituent a. We shall make use of a number θ which represents 2p/(p-1) when p is odd, but is equal to 2 when p is 2. Again suppose that we have before us all the substitutions of the series s_1, s_2, \cdots that (1) connect the given system a with other letters of H_i , and (2) displace the minimum number of new letters. If all these substitutions have a power that replaces every a by a not-a, if each one of them displaces all the letters of one of the sets b', b'', \cdots whose letters are found in cycles with a, and if more than one new letter is in some cycle, we have two cases to consider. Each of these substitutions may have at least one cycle entirely new to H_i , in which case the following inequalities hold true:

(B)
$$N_{i+1} \leq N_i + pq - n_i - p$$
, $c_{i+1} \leq c_i - 1 + q - n_i$, $n_{i+1} \geq pn_i$

On the other hand if even one substitution has no cycle of new letters only, the three conditions just stated being satisfied, we conclude that

(C)
$$N_{i+1} \leq N_i + pq - n_i - p$$
, $c_{i+1} \leq c_i - 1$, $n_{i+1} \geq \theta n_i$.

The inequality $n_{i+1} \ge \theta n_i$ requires explanation. If $n_{i+1} < \theta n_i$, every power of s_{i+1} replaces one letter a at least by an a. Then the number of new letters is

q at most, with not more than one in any cycle. In fact, if there is one of the substitutions that satisfy (1) and (2) for which any one of the three conditions under which (B) and (C) were formed fails, that substitution s_{i+1} has not more than one new letter in any cycle. Hence

(D)
$$N_{i+1} \leq N_i + q$$
, $c_{i+1} \leq c_i - 1$, $n_{i+1} \geq n_i + p$.

11. In the formation of the groups H_2 , H_3 , ... there is another point of view which is of value. We no longer base our reasoning upon an arbitrarily chosen set a of H_i , but impose upon s_{i+1} the conditions of § 8, which we need not repeat, and in addition the condition (4) that no substitution of s_1 , s_2 , ... which satisfies (1), (2) and (3) has fewer cycles in the letters of the extended set formed by the union of sets of H_i by s_{i+1} . Let \bar{H}_i , \bar{H}_{i+1} , \bar{K}_{i+1} , have the same meaning as before, that is, \bar{H}_{i+1} is transitive in the letters of the sets a, b, ... of H_i and certain new letters which s_{i+1} joins to these sets. If \bar{s}_{i+1} is of higher degree than any of the substitutions \bar{s}_1 , \bar{s}_2 , ..., \bar{s}_i , then by condition (4), no substitution of \bar{K}_{i+1} , similar to one of the substitutions \bar{s}_1 , \bar{s}_2 , ..., \bar{s}_i , can connect in its cycles two of the sets of a, b, Then if two of the sets a, b, ... are in one transitive constituent of \bar{K}_{i+1} , there are substitutions in \bar{K}_{i+1} that displace all the letters of one of the sets, as a, and such that all powers of these substitutions replace every a by a new letter:

$$r = (a_1 \alpha_1' \cdots \alpha_1^{(p-1)}) \cdots (a_{n_i} \alpha_{n_i}' \cdots \alpha_{n_i}^{(p-1)}) \cdots$$

The transforms of r by substitutions of H_i generate a group with a transitive constituent of degree pn_i in the letters $a_1, a_2, \dots, a'_1, \dots, a_{n_i}^{(p-1)}$. If \bar{K}_{i+1} does not unite transitively two sets of H_i , the sets of intransitivity of \bar{K}_{i+1} are systems of imprimitivity of \bar{H}_{i+1} which \bar{s}_{i+1} must permute. Then the degree of \bar{H}_{i+1} is pn_i or more. If one system is made up entirely of new letters, the transforms of \bar{s}_{i+1} by substitutions of \bar{H}_i generate a transitive group. If no system is made up entirely of new letters, exactly p distinct sets of a, b, \dots of H_i are united by \bar{s}_{i+1} . Consider in particular a substitution $\bar{s} = (a_1 a_2 \dots a_p) \dots$ of \bar{H}_i . The group $\{r, s^{-1}rs\}$ has a constituent of degree p^2 , and for it

$$(E) \hspace{1cm} N_{2} \! \leq \! 2pq - p^{2}, \hspace{0.5cm} c_{2} \! \leq \! 1 + 2 \left(q - p \right), \hspace{0.5cm} n_{2} \! \geq \! p^{2}.$$

Likewise, when \bar{K}_{i+1} has p sets, if a power of \bar{s}_{i+1} replaces each of the letters $a_1, a_2, \dots a_p$ by a new letter a, the same inequalities are satisfied by the group $\{s_{i+1}, s^{-1}s_{i+1}s\}$. If no power of s_{i+1} replaces each of the letters a_1, a_2, \dots, a_p by letters new to H_i , s_{i+1} involves all the letters of p cycles of s, so that the inequalities hold for $\{s, s_{i+1}\}$.

Now we assume that \bar{s}_{i+1} is not of higher degree than the substitutions of highest degree among \bar{s}_1 , \bar{s}_2 , \cdots , \bar{s}_i , and that s_{i+1} has two new letters in some one of its cycles. We know (§ 8) that \bar{s}_{i+1} displaces all the letters of \bar{H}_i so that

 \bar{s}_{i+1} displaces no new letter. From this it follows that every power of s_{i+1} replaces a letter of one set of \bar{H}_i by a letter of another set of \bar{H}_i . Let s_{i+1}^x have two new letters adjacent. Because of condition (2) no generator of $\{\bar{H}_i, \bar{s}_{i+1}^{-x} \bar{H}_i \bar{s}_{i+1}^x \}$ has letters of two sets of H_i in one of its cycles. But since there are no new letters α in this group, \bar{s}_{i+1} permutes cyclically p sets a, b, \cdots of \bar{H}_i . Again if \bar{s} is a generator of \bar{H}_i , the group $\{s, s_{i+1}\}$ satisfies inequalities (E) provided \bar{s} displaces letters of all the p sets a, b, \cdots ; but if \bar{s} leaves fixed all the letters of one of the sets a, b, \cdots , the group $\{s, s^{-1}s_{i+1}s\}$ satisfies inequalities (E). The result which we are going to use is this:

If we have before us a group H_i we may be able to find in s_{i+1}, s_{i+2}, \dots a substitution which unites two or more sets of H_i and has at most one new letter in any cycle, thus satisfying the inequalities:

$$(F) N_{i+1} \leq N_i + q, c_{i+1} \leq c_i - 1.$$

A third inequality $n_{i+1} \leq n_i$ is irrelevant since the largest set of H_i is not taken into account and may not be enlarged by s_{i+1} . But if s_{i+1}, s_{i+2}, \cdots do not include such a substitution, we can say that there are two substitutions in the series s_1, s_2, \cdots which we are at liberty to use for s_1 and s_2 which generate a group satisfying (E). The constituent of degree p^2 or more is imprimitive.

- 12. Should it be possible to find for all the groups H_i ($i=1,2,\cdots$) up to the transitive group H_{λ} a substitution s_{i+1} with at most one new letter to a cycle, then the degree of H_{λ} is not greater than pq + (q-1)q. This is certainly true if q is less than or equal to p. But if at any point in the formation of this chain of groups, there is no substitution s_{i+1} with at most one new letter in a cycle, we begin our series H_1, H_2, \cdots with the H_2 satisfying (E). us first impose upon q the condition p < q < 2p + 3, and suppose p odd. then the upper limit of the degree of H_{λ} is not given by $pq + q^2 - q$, we begin with inequalities (E). In the next step we cannot have inequalities (D) since then the p^2 (or more) letters of a set a of H_2 would have to be present in at least $\theta p = 2p + 2 + 2/(p-1)$ cycles of s_3 . Then the degree of H_{λ} is not greater than $N_2 + (c_2 - 1)q = 2q^2 - p^2$. Note that if q = p + 1, $pq + q^2 - q > 2q^2 - p^2$, and if q = 2p, $pq + q^2 - q < 2q^2 - p^2$; it is sufficiently precise to state that a primitive group that contains a substitution of order p and degree pq (p an odd prime, p < q < 2p + 3), contains a transitive subgroup the degree of which is not greater than the larger of the two numbers $pq + q^2 - q$ and $2q^2 - p^2$.
- 13. Let us now suppose that q is subject to the inequality $2p + 3 \le q < p^2$, and that p is odd. Let H_2 satisfy (E). If we have before us a group H_i , the question arises: What comparison exists between the degree of H_{λ} when H_{i+1} satisfies (C) and H_{i+2} satisfies (E) and the degree when H_{i+1} is subject to (E) while H_{i+2} obeys (C)? A simple calculation shows that there is no difference in the degrees. But to have H_{i+1} satisfy (C) and H_{i+2} (D) is more unfavor-

able than the reverse. Then let H_1, H_1, \dots, H_n obey (C), so that

The remaining groups $H_{z+1}, \dots, H_{2(q-p+1)}$ satisfy (D):

whence

 $N_{2(q-p+1)} \leq xpq - p^2 - (x-2)p - (p^2 + p^2\theta + \cdots + p^2\theta^{x-3}) + (2q-2p+2-x)q,$ or

$$N_{2(q-p+1)} \le 2q^2 - p^2 + (pq-q-p)(x-2) - p^2 \frac{\theta^{x-2}-1}{\theta-1}.$$

A condition which n_{x-1} must satisfy is

$$n_{x-1} \leq q \frac{p-1}{2},$$

that is

$$\theta^{x-3}p^2 \leq q \frac{p-1}{2}.$$

If H_{x-1} instead of H_x were the last group subject to inequality (C), then

$$N_{2(q-p+1)} \le 2q^2 - p^2 + (pq - q - p)(x - 3) - p^2 \frac{\theta^{x-3} - 1}{\theta - 1}.$$

This expression is always numerically less than the other. For the difference

$$(pq-q-p)-p^2\theta^{z-3} \ge pq-q-p-q\frac{p-1}{2} \ge \frac{p-1}{2}(q-\theta),$$

is positive. Hence the limiting value of the degree of H_{λ} is obtained by replacing x in the first formula by the largest integer which satisfies $\theta^{x-3} p^2 \leq q(p-1)/2$, and this is the largest integer in $2 + \log_{\theta}(q/p)$.

If a primitive group contains a substitution of odd prime order p on more than 2p + 2 and less than p^2 cycles, it contains a transitive subgroup of degree not greater than

$$2q^2 - p^2 + (pq - q - p)\mu - p^2 \frac{\theta^{\mu} - 1}{\theta - 1},$$

where μ is the integral part of $\log_{\theta}(q/p)$ and $\theta = 2p/(p-1)$.

14. We finally take q so large $(q \ge p^2)$ that the inequality (B) is possible. The case p = 2 is not excluded. As before it is evident that it is more unfavor-

able to have H_{i+1} subject to (B) and H_{i+2} to (D) than for H_{i+1} to satisfy (D) and H_{i+2} to satisfy (B). Now compare (B) and (C) in relation to H_{i+1} and H_{i+2} . If the inequalities are applied in the order (B), (C), we have

$$\begin{split} N_{i+2} & \leq N_i + 2p(q-1) - n_i - pn_i, \qquad c_{i+2} \leq c_i - 2 + q - n_i, \qquad n_{i+2} \geq \theta pn_i; \\ \text{and if in the order } (C), (B): \end{split}$$

$$N'_{i+2} \leq N_i + 2p(q-1) - n_i - \theta n_i, \qquad c'_{i+2} \leq c_i - 2 + q - \theta n_i, \qquad n'_{i+2} \geq p \theta n_i.$$

If p is 2 or 3, $\theta=p$, and then obviously the first arrangement is the more unfavorable. When p is greater than 3 the matter is not so simple. However we can show that the addition of one new set of intransitivity by s_{i+1} is equivalent in the end to the introduction of q or more new letters. For one more set means one more group H in the chain H_1, H_2, \cdots before arrival at a transitive group H_{λ} . This is evidently true if the extra group gives rise to a repetition of the inequalities (D). There only remains the question whether $pq - n_i - p$ can be less than q. Now (B) and (C) are not necessary unless $n_i \leq (p-1)/2q$. From

$$pq - n_i - p < q$$

we have

$$(p-1)q-p < n_i \le \frac{p-1}{2}q,$$

whence

$$q < \theta$$

which is false under the present assumptions. Hence, while N'_{i+2} exceeds N_{i+2} by $(p-\theta)n_i$, if we multiply $(\theta-1)n_i$, the difference between c_{i+2} and c'_{i+2} , by q, it is apparent that the first order is the more unfavorable.

We now form the successive inequalities in their most unfavorable order:

$$\begin{split} N_2 & \leq 2pq - p^2, & c_2 \leq 1 + 2(q - p), & n_2 \geq p^2, \\ N_3 & \leq N_2 + pq - n_2 - p, & c_3 \leq c_2 + q - n_2 - 1, & n_3 \geq p^3, \\ & \ddots \\ N_x & \leq N_{x-1} + pq - n_{x-1} - p, & c_x \leq c_{x-1} + q - n_{x-1} - 1, & n_x \geq p^x, \\ N_{x+1} & \leq N_x + pq - n_x - p, & c_{x+1} \leq c_x - 1, & n_{x+1} \geq p^x \theta, \\ & \ddots \\ N_{x+y} & \leq N_{x+y-1} + pq - n_{x+y-1} - p, & c_{x+y} \leq c_{x+y-1} - 1, & n_{x+y} \geq p^x \theta^y, \\ N_{x+y+1} & \leq N_{x+y} + q, & c_{x+y+1} \leq c_{x+y} - 1, \\ & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ N_{\lambda} & \leq N_{x+y} + (c_{x+y} - 1)q. \end{split}$$

From these inequalities we derive the following expression for the upper limit

of the degree of H_{λ} , in which x and y remain to be determined:

$$N_{\lambda} \leq \frac{p^2(q-p+2)}{p-1} + q^2x + (pq-q-p)(x+y-2) - \left(\frac{q+1}{p-1} - \frac{1}{\theta-1}\right)p^x - \frac{p^x\theta^y}{\theta-1}.$$

To cut short unprofitable refinements we now regard this expression, following Jordan's lead, as a continuous function of two independent variables x and y and equate to zero the partial derivatives

$$\begin{split} q^2 + pq - q - p - \left(\frac{q+1}{p-1} - \frac{1}{\theta-1}\right) p^x \log p - \frac{p^x \theta^y}{\theta-1} \log p &= 0, \\ pq - q - p - \frac{p^x \theta^y}{\theta-1} \log \theta &= 0. \end{split}$$

We solve, substitute for N_{λ} , reduce, and have for the limit of the degree of the transitive subgroup H_{λ}

$$\frac{p^2(q-p+2)}{p-1} + (q-1)(q+p)\log_p\frac{ac}{e} + a\log_\theta\frac{c\theta^2\log\theta}{\theta-1},$$

in which

$$a = pq - q - p, \qquad b = \frac{q+1}{p-1} - \frac{1}{\theta-1}, \qquad abc = \frac{q^2+a}{\log p} - \frac{a}{\log \theta}.$$

15. When p is 2 or 3, the formula can be greatly simplified, for then $\theta = p$, and y = 0. For p = 3 it becomes

$$\frac{1}{2}(q+3)+(q+3)(q-1)\mu-\frac{1}{2}(q+1)3^{\mu}$$

where μ is the integral part of $\log_3 3q$.

16. When p=2 inequality (F) may be replaced by

$$(F') N_{i+1} \leq N_i + q - 1,$$

whence

$$N_{\lambda} \le N_{\star} + (c_{\star} - 1)(q - 1) \le 2(q + 1) + (q^{2} - 1)x - q \cdot 2^{x}$$

If 2^{x-1} is less than q, the difference of N_{λ} with respect to x is

$$(q^2-1)-q2^{x-1}$$

and is positive. If 2^{x-1} is equal to q, this difference is negative, but the difference with respect to x of

$$2(q+1)+(q^2-1)(x-1)-q2^{x-1}$$

is positive. Hence when p=2 $(q \ge 4)$ the limit of the degree of a transitive subgroup H_{λ} of G is

$$2(q+1)+(q^2-1)\mu-q\cdot 2^{\mu},$$

where μ is the largest whole number less than $\log_2 2q$.

17. A theorem was stated in the introduction which was proved in § 12 for p an odd prime. But if p is 2, we know from recent researches * on the class of primitive groups that the theorem is true except perhaps when the given substitution of order 2 has 6 cycles and the group in question is of class 12. But the limit of the preceding paragraph, obtained without any restriction on the class of the group, is 71, while the limit required for the theorem is 68. The inequalities of § 14 allow H_3 (p=2, q=6) ten transitive constituents. A moment's consideration shows that, if the entire group is of class 12, H_3 cannot have so many constituents and that the limit of the degree of H_{λ} is 66.

URBANA, ILLINOIS, December, 1909.

^{*}C. JORDAN, Liouville's Journal, ser. 2, vol. 17 (1872), p. 363; NETTO, Theory of Substitutions, Cole's translation (1892), p. 133; MILLER, American Mathematical Monthly, vol. 9 (1902), p. 63; MANNING, American Journal of Mathematics, vol. 32 (1910), pp. 235-257, and vol. 28 (1906), p. 226.